Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae.

Identifieur interne : 000507 ( Main/Exploration ); précédent : 000506; suivant : 000508

Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae.

Auteurs : Weiping Zhang [République populaire de Chine] ; Guocheng Du [République populaire de Chine] ; Jingwen Zhou [République populaire de Chine] ; Jian Chen [République populaire de Chine]

Source :

RBID : pubmed:29436478

Descripteurs français

English descriptors

Abstract

Nitrogen is one of the most important essential nutrient sources for biogenic activities. Regulation of nitrogen metabolism in microorganisms is complicated and elaborate. For this review, the yeast Saccharomyces cerevisiae was chosen to demonstrate the regulatory mechanism of nitrogen metabolism because of its relative clear genetic background. Current opinions on the regulation processes of nitrogen metabolism in S. cerevisiae, including nitrogen sensing, transport, and catabolism, are systematically reviewed. Two major upstream signaling pathways, the Ssy1-Ptr3-Ssy5 sensor system and the target of rapamycin pathway, which are responsible for sensing extracellular and intracellular nitrogen, respectively, are discussed. The ubiquitination of nitrogen transporters, which is the most general and efficient means for controlling nitrogen transport, is also summarized. The following metabolic step, nitrogen catabolism, is demonstrated at two levels: the transcriptional regulation process related to GATA transcriptional factors and the translational regulation process related to the general amino acid control pathway. The interplay between nitrogen regulation and carbon regulation is also discussed. As a model system, understanding the meticulous process by which nitrogen metabolism is regulated in S. cerevisiae not only could facilitate research on global regulation mechanisms and yeast metabolic engineering but also could provide important insights and inspiration for future studies of other common microorganisms and higher eukaryotic cells.

DOI: 10.1128/MMBR.00040-17
PubMed: 29436478
PubMed Central: PMC5813884


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Zhang, Weiping" sort="Zhang, Weiping" uniqKey="Zhang W" first="Weiping" last="Zhang">Weiping Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu</wicri:regionArea>
<wicri:noRegion>Jiangsu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Du, Guocheng" sort="Du, Guocheng" uniqKey="Du G" first="Guocheng" last="Du">Guocheng Du</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu</wicri:regionArea>
<wicri:noRegion>Jiangsu</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu</wicri:regionArea>
<wicri:noRegion>Jiangsu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Jingwen" sort="Zhou, Jingwen" uniqKey="Zhou J" first="Jingwen" last="Zhou">Jingwen Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China zhoujw1982@jiangnan.edu.cn jchen@jiangnan.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu</wicri:regionArea>
<wicri:noRegion>Jiangsu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jian" sort="Chen, Jian" uniqKey="Chen J" first="Jian" last="Chen">Jian Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China zhoujw1982@jiangnan.edu.cn jchen@jiangnan.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu</wicri:regionArea>
<wicri:noRegion>Jiangsu</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu</wicri:regionArea>
<wicri:noRegion>Jiangsu</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29436478</idno>
<idno type="pmid">29436478</idno>
<idno type="doi">10.1128/MMBR.00040-17</idno>
<idno type="pmc">PMC5813884</idno>
<idno type="wicri:Area/Main/Corpus">000615</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000615</idno>
<idno type="wicri:Area/Main/Curation">000615</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000615</idno>
<idno type="wicri:Area/Main/Exploration">000615</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Zhang, Weiping" sort="Zhang, Weiping" uniqKey="Zhang W" first="Weiping" last="Zhang">Weiping Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu</wicri:regionArea>
<wicri:noRegion>Jiangsu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Du, Guocheng" sort="Du, Guocheng" uniqKey="Du G" first="Guocheng" last="Du">Guocheng Du</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu</wicri:regionArea>
<wicri:noRegion>Jiangsu</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu</wicri:regionArea>
<wicri:noRegion>Jiangsu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Jingwen" sort="Zhou, Jingwen" uniqKey="Zhou J" first="Jingwen" last="Zhou">Jingwen Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China zhoujw1982@jiangnan.edu.cn jchen@jiangnan.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu</wicri:regionArea>
<wicri:noRegion>Jiangsu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jian" sort="Chen, Jian" uniqKey="Chen J" first="Jian" last="Chen">Jian Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China zhoujw1982@jiangnan.edu.cn jchen@jiangnan.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu</wicri:regionArea>
<wicri:noRegion>Jiangsu</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu</wicri:regionArea>
<wicri:noRegion>Jiangsu</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbiology and molecular biology reviews : MMBR</title>
<idno type="eISSN">1098-5557</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Transport Systems, Neutral (genetics)</term>
<term>Amino Acid Transport Systems, Neutral (metabolism)</term>
<term>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors (genetics)</term>
<term>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors (metabolism)</term>
<term>Biological Transport (genetics)</term>
<term>Biological Transport (physiology)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Intracellular Signaling Peptides and Proteins (genetics)</term>
<term>Metabolic Engineering (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein Processing, Post-Translational (MeSH)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (genetics)</term>
<term>Signal Transduction (physiology)</term>
<term>Ubiquitination (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azote (métabolisme)</term>
<term>Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines (génétique)</term>
<term>Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines (métabolisme)</term>
<term>Génie métabolique (MeSH)</term>
<term>Maturation post-traductionnelle des protéines (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines et peptides de signalisation intracellulaire (génétique)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Systèmes de transport d'acides aminés neutres (génétique)</term>
<term>Systèmes de transport d'acides aminés neutres (métabolisme)</term>
<term>Transduction du signal (génétique)</term>
<term>Transduction du signal (physiologie)</term>
<term>Transport biologique (génétique)</term>
<term>Transport biologique (physiologie)</term>
<term>Ubiquitination (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Amino Acid Transport Systems, Neutral</term>
<term>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</term>
<term>Intracellular Signaling Peptides and Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acid Transport Systems, Neutral</term>
<term>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</term>
<term>Nitrogen</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Biological Transport</term>
<term>Saccharomyces cerevisiae</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines et peptides de signalisation intracellulaire</term>
<term>Saccharomyces cerevisiae</term>
<term>Systèmes de transport d'acides aminés neutres</term>
<term>Transduction du signal</term>
<term>Transport biologique</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Systèmes de transport d'acides aminés neutres</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Transduction du signal</term>
<term>Transport biologique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Biological Transport</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Metabolic Engineering</term>
<term>Phosphorylation</term>
<term>Protein Processing, Post-Translational</term>
<term>Ubiquitination</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génie métabolique</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Phosphorylation</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Ubiquitination</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nitrogen is one of the most important essential nutrient sources for biogenic activities. Regulation of nitrogen metabolism in microorganisms is complicated and elaborate. For this review, the yeast
<i>Saccharomyces cerevisiae</i>
was chosen to demonstrate the regulatory mechanism of nitrogen metabolism because of its relative clear genetic background. Current opinions on the regulation processes of nitrogen metabolism in
<i>S. cerevisiae</i>
, including nitrogen sensing, transport, and catabolism, are systematically reviewed. Two major upstream signaling pathways, the Ssy1-Ptr3-Ssy5 sensor system and the target of rapamycin pathway, which are responsible for sensing extracellular and intracellular nitrogen, respectively, are discussed. The ubiquitination of nitrogen transporters, which is the most general and efficient means for controlling nitrogen transport, is also summarized. The following metabolic step, nitrogen catabolism, is demonstrated at two levels: the transcriptional regulation process related to GATA transcriptional factors and the translational regulation process related to the general amino acid control pathway. The interplay between nitrogen regulation and carbon regulation is also discussed. As a model system, understanding the meticulous process by which nitrogen metabolism is regulated in
<i>S. cerevisiae</i>
not only could facilitate research on global regulation mechanisms and yeast metabolic engineering but also could provide important insights and inspiration for future studies of other common microorganisms and higher eukaryotic cells.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29436478</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5557</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>82</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>06</Month>
</PubDate>
</JournalIssue>
<Title>Microbiology and molecular biology reviews : MMBR</Title>
<ISOAbbreviation>Microbiol Mol Biol Rev</ISOAbbreviation>
</Journal>
<ArticleTitle>Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00040-17</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/MMBR.00040-17</ELocationID>
<Abstract>
<AbstractText>Nitrogen is one of the most important essential nutrient sources for biogenic activities. Regulation of nitrogen metabolism in microorganisms is complicated and elaborate. For this review, the yeast
<i>Saccharomyces cerevisiae</i>
was chosen to demonstrate the regulatory mechanism of nitrogen metabolism because of its relative clear genetic background. Current opinions on the regulation processes of nitrogen metabolism in
<i>S. cerevisiae</i>
, including nitrogen sensing, transport, and catabolism, are systematically reviewed. Two major upstream signaling pathways, the Ssy1-Ptr3-Ssy5 sensor system and the target of rapamycin pathway, which are responsible for sensing extracellular and intracellular nitrogen, respectively, are discussed. The ubiquitination of nitrogen transporters, which is the most general and efficient means for controlling nitrogen transport, is also summarized. The following metabolic step, nitrogen catabolism, is demonstrated at two levels: the transcriptional regulation process related to GATA transcriptional factors and the translational regulation process related to the general amino acid control pathway. The interplay between nitrogen regulation and carbon regulation is also discussed. As a model system, understanding the meticulous process by which nitrogen metabolism is regulated in
<i>S. cerevisiae</i>
not only could facilitate research on global regulation mechanisms and yeast metabolic engineering but also could provide important insights and inspiration for future studies of other common microorganisms and higher eukaryotic cells.</AbstractText>
<CopyrightInformation>Copyright © 2018 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Weiping</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Guocheng</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Jingwen</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China zhoujw1982@jiangnan.edu.cn jchen@jiangnan.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Jian</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China zhoujw1982@jiangnan.edu.cn jchen@jiangnan.edu.cn.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>02</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Microbiol Mol Biol Rev</MedlineTA>
<NlmUniqueID>9706653</NlmUniqueID>
<ISSNLinking>1092-2172</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026921">Amino Acid Transport Systems, Neutral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051778">Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047908">Intracellular Signaling Peptides and Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D026921" MajorTopicYN="N">Amino Acid Transport Systems, Neutral</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051778" MajorTopicYN="N">Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047908" MajorTopicYN="N">Intracellular Signaling Peptides and Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060847" MajorTopicYN="N">Metabolic Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054875" MajorTopicYN="N">Ubiquitination</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Agp1</Keyword>
<Keyword MajorTopicYN="Y">GAAC pathway</Keyword>
<Keyword MajorTopicYN="Y">Gap1</Keyword>
<Keyword MajorTopicYN="Y">NCR</Keyword>
<Keyword MajorTopicYN="Y">RTG pathway</Keyword>
<Keyword MajorTopicYN="Y">SPS sensor system</Keyword>
<Keyword MajorTopicYN="Y">Saccharomyces cerevisiae</Keyword>
<Keyword MajorTopicYN="Y">TOR pathway</Keyword>
<Keyword MajorTopicYN="Y">nitrogen regulation</Keyword>
<Keyword MajorTopicYN="Y">ubiquitination</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29436478</ArticleId>
<ArticleId IdType="pii">82/1/e00040-17</ArticleId>
<ArticleId IdType="doi">10.1128/MMBR.00040-17</ArticleId>
<ArticleId IdType="pmc">PMC5813884</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Cell. 2000 Mar;11(3):915-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1995 Oct;131(2):297-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7593160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Aug;22(15):5395-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12101234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Apr;1850(4):620-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25512067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Jan;21(1):271-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11113201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Mar 30;45(6):743-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22445487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2010 Aug;22(4):513-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20538447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Aug;176(4):2087-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17603098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Aug;178(15):4734-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8755910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1993 Jul;9(7):771-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8368011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1999 Dec;36(6):317-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10654085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1966 Aug 27;211(5052):969-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5968307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Sep;192(1):73-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22964838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Aug 15;1459(2-3):363-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11004452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Apr 20;45(7):3985-3996</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28168297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 May 17;18(10 ):2782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Feb;22(4):1246-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11809814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2013 Nov;30(11):437-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23996237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1998 Mar;33(3):171-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9508791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2016 Mar 08;2:15049</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27462445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Feb 17;292(7):2660-2669</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28057755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Jun 15;20(12):1563-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16778074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Mar;190(3):885-929</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22419079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2014 Jan;25(1):196-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24196832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2015;12(8):824-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26259534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2015 Feb;199(2):455-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25527290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2006 Jun 5;173(5):695-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16735580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Microbiol Biotechnol. 2012;22(2):105-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22627175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Oct 6;270(5233):50-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7569949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2015 Nov;201(3):989-1016</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26333687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Dec;30(24):5598-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20956561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1974;128(1):73-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4150855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jul 18;154(2):403-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23870128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Dec 15;13(24):6021-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7813440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 Aug;10(8):935-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18604198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1990 May 31;190(1):39-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2194797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2009 Oct;37(Pt 5):937-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19754430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 May 22;273(21):12696-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9582292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2000 Aug;6(2):269-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10983975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1983 Jan 10;258(1):119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6129248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2000 Dec 14-28;10(24):1574-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11137008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2012 Apr;158(Pt 4):925-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22282516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Oct 15;21(20):3552-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Dec 30;286(52):44897-912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22039046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2013 Jun;18(6):459-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23517290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Mar 3;281(9):5546-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2009 Feb;37(Pt 1):242-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19143640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 5;279(45):46527-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15326168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2017 Mar 1;65(8):1641-1648</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28185458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Jun 18;58(6):977-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26028537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Feb;177(3):792-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7836314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Apr;166(4):1727-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15126393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2010 Feb;56(1):1-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20054690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Jan 18;251(4991):283-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1702904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1982 Sep;2(9):1088-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6757722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jan 18;288(3):1841-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23184930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jan 31;289(5):2918-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24324255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1993 Feb;237(1-2):17-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8455553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1997 Dec;147(4):1569-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9409822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Jul 31;10(7):e1004534</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25079372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Dec 15;16(24):3158-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12502738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2010 Feb;11(2):113-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20094052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Jun;5(6):e1000515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19521502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Nov;11(11):5767-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1656238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):8919-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18245087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Aug 8;289(32):22103-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24942738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Membr Biol. 2008 Feb;25(2):164-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18307103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2013 Sep 15;12(18):2948-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23974112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2011;80:1001-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21548787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Jul;30(13):3299-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20421414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2015 Jan 09;16(1):1509-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25584613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Chem. 2013 Dec 15;141(4):4161-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23993600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2006 Mar;6(2):218-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16487345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Apr 15;125(Pt 8):1920-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22344254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Jun;78(12):4468-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22492438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 May 31;340(6136):1100-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23723238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1996 Jul 31;30(2):107-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8660458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2010 Apr;20(4):196-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20138522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 17;275(46):35727-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10940301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2002 Feb;1(1):22-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12455968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 2;280(35):30697-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16002396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Dec 17;20(24):7209-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11742997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 Aug;10(8):550-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19626045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 May 15;16(10):2769-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9184222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1996 Oct 4;262(4):473-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8893857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Feb;21(3):814-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11154269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2013 Sep;45(3):413-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22526238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2017 Feb;63(1):35-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27233284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2006 Dec 8;99(12):1305-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1990 Sep;172(9):4927-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1975578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2015 Jun;25(6):825-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25720775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2008 Aug;190(15):5162-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18502860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Aug;17(8):4282-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9234685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2009 Dec;10(12):1856-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19912579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Oct 6;270(5233):93-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7569955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Oct;7(10):1819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Oct 1;274(40):28096-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10497160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2000 Dec 22;487(1):3-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Sep 23;6:33970</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27659668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jan 8;285(2):855-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19906648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Feb 7;68(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1739968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4316-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21368187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2015 Oct 6;13(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26387955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 May 27;280(21):20558-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Mar 28;272(13):8256-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9079645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Nov;24(22):9771-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15509782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Feb;14(3):215-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9544242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2017 Feb;205(2):633-655</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28007891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1997 Jul 15;152(2):261-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9231419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Apr 13;46(1):105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2005;59:407-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Feb 11;286(6):4620-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21127045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2010 Feb-Mar;391(2-3):163-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20030582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 1999 Aug;12(1):35-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10554772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Jan;1861(1):21-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26477382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2015 May 29;5(8):1625-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26024867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Nov 23;276(47):43949-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2013 Dec;61:69-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24161729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Aug;19(8):5405-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10409731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2008;42:27-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18303986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jun 9;275(23):17611-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10748041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2001 Mar;65(3):728-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11330701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 2001 Jan;264(5):613-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11212916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Feb 29;44(4):1630-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26553807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Jun 2;125(5):1003-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16751107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2015 Sep;25(9):1043-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26206314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Jun;16(6):2744-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8649382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Jan 1;433(1):31-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21158740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1998 Jun;9(6):1253-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9614172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Jul;152(3):853-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10388807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Oct 1;21(19):5292-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12356745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2009 May 4;185(3):493-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19398763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Aug;24(15):6871-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15254252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2004;20:87-123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15473836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2011 Oct;39(5):1466-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21936835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2015 Oct;25(10):1581-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26355004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14837-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 23;277(34):30675-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12070158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Jan;80(1):392-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24185848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2016 Jan 15;27(2):382-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26609069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 May 1;15(9):1078-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11331604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Mar 15;20(6):1425-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11250908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Struct Funct. 2012;37(2):141-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22971977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Genomics. 2015;2015:179528</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26421274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2013 May 28;6(277):ra42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23716719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2016 Feb;26(2):211-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26602697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Aug 15;25(16):1668-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21816923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2013 Jul;94(1):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23611841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 May 28;285(22):16893-911</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20233714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1998 Nov;30(3):603-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9822825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jul 10;1744(3):438-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15913810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 May 15;90(10):4616-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8099443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12503-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9356479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Nov 14;135(4):714-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18976803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2014 Aug;14(5):683-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24738657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1985 Sep;5(9):2349-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3915540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2003 Apr 28;161(2):333-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12719473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2013 Sep 30;202(7):1107-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24081491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2000 Aug;146 ( Pt 8):1797-814</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 May;72(4):931-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Apr 1;17(7):859-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 24;275(47):37011-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10973982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Nov;32(22):4510-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22966204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 Nov;10 (11):755-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19851334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1986;10(8):587-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3327612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2013 Aug 22;20(8):1055-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23932525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2011 May;18(5):520-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21540891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 Jun;10 (6):398-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19436320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2014 Mar;38(2):254-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24483210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2006;2:49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16969341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 Jul;69(1):277-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18513215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 9;279(15):14752-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2003 Oct;44(1):8-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14508604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Aug 3;27(3):509-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17679098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Jul 1;19(1):15-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15989961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Aug;18(8):2779-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17507646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2014 Dec;34(24):4447-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25266656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jan 25;288(4):2789-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23223232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Biophys J. 2013 Mar;42(2-3):181-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22552869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 May;180(9):2556-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9573211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Aug 24;287(35):29648-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22807443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Nov 4;334(6056):678-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2016 Apr 15;27(8):1383-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26941329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Dec 30;280(52):42528-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16253991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2014 Apr 14;101:102-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24530623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Nov;8(5):1017-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2002 Aug;26(3):223-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12165425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):410-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1985;38(1-3):205-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3905514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Aug 1;22(15):2754-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Feb;19(2):989-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9891035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Oct 2;273(40):25864-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9748261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2017 Feb;22(2):135-147</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28084665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Oct;2(5):922-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1997 Apr;13(5):435-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9153753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Aug 9;25(15):3546-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16874307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Nov 29;1695(1-3):89-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15571811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2013 May;24(9):1480-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23447701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2004 Oct;3(5):1261-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15470255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Oct;14(10):6597-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7523855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2009;78:399-434</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19489725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Jul;1838(7):1719-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24699373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2006;40:159-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2016 Jan 15;27(2):397-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26582391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Mar 5;12(5):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11882290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Nov 21;52(4):495-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24095279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2014 Sep;10(9):1565-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25046117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1991 Jan 15;97(2):163-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1999281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Mar;14(3):1204-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jun 26;284(26):17720-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1995 Jul;28(2):177-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8590470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Jun 1;22(11):1919-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21471002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2006 Jul;17(7):3031-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16641373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2002 Oct;1(5):663-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12455686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2008 Jan;77(6):1191-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18064452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2004 Oct;29(10):556-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15450611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1985 Oct;111(2):243-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2865193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jun 4;285(23):17880-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20378536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jan 5;282(1):594-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Jun;176(2):877-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17435223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Jul;29(13):3803-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19380492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jan 16;313(3):745-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14697254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2010 Feb;10(1):2-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19686338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2002 May 15;290(1-2):1-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12062797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2015 Dec 4-11;468(1-2):32-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26546823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Oct;81(20):6442-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6387704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1989 Nov 15;83(1):153-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2687114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 May 20;105(20):7194-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18443284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Nov;189(3):705-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22084422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1992 Nov;12 (11):4946-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1328868</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Weiping" sort="Zhang, Weiping" uniqKey="Zhang W" first="Weiping" last="Zhang">Weiping Zhang</name>
</noRegion>
<name sortKey="Chen, Jian" sort="Chen, Jian" uniqKey="Chen J" first="Jian" last="Chen">Jian Chen</name>
<name sortKey="Chen, Jian" sort="Chen, Jian" uniqKey="Chen J" first="Jian" last="Chen">Jian Chen</name>
<name sortKey="Du, Guocheng" sort="Du, Guocheng" uniqKey="Du G" first="Guocheng" last="Du">Guocheng Du</name>
<name sortKey="Du, Guocheng" sort="Du, Guocheng" uniqKey="Du G" first="Guocheng" last="Du">Guocheng Du</name>
<name sortKey="Zhou, Jingwen" sort="Zhou, Jingwen" uniqKey="Zhou J" first="Jingwen" last="Zhou">Jingwen Zhou</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000507 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000507 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29436478
   |texte=   Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29436478" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020